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1 The lost submarine: details

We presented a situation where N = 2 observations were distributed uniformly:

yi
iid∼ Uniform(θ − 5, θ + 5), i = 1, . . . , N

and the goal is to estimate θ, the location of the submarine hatch. Without loss of generality we denote x1
as the smaller of the two observations. In the text, we considered five 50% confidence procedures; in this
section, we give the details about the sampling distribution procedure and the Bayes procedure that were
omitted from the text.

1.1 Sampling distribution procedure

Consider the sample mean, ȳ = (y1 + y2)/2. As the sum of two uniform deviates, it is a well-known fact
that ȳ will have a triangular distribution with location θ and minimum and maximum θ − 5 and θ + 5,
respectively. This distribution is shown in Figure 1.

It is desired to find the width of the base of the shaded region in Figure 1 such that it has an area of .5.
To do this we first find the width of the base of the unshaded triangular area marked “a” in Figure 1 such
that the area of the triangle is .25. The corresponding unshaded triangle on the left side will also have
area .25, which means that since the figure is a density, the shaded region must have the remaining area
of .5. Elementary geometry will show that the width of the base of triangle “a” is 5/

√
2, meaning that the

distance between θ and the altitude of triangle “a” is 5− 5/
√

2 or about 1.46m.
We can thus say that

Pr(−(5− 5/
√

2) < ȳ− θ < 5− 5/
√

2) = .5

which implies that, in repeated sampling,

Pr(ȳ− (5− 5/
√

2) < θ < ȳ + (5− 5/
√

2)) = .5

which defines the sampling distribution confidence procedure. This is an example of using ȳ− θ as a
pivotal quantity (Casella & Berger, 2002).

1

mailto:richarddmorey@gmail.com
https://github.com/richarddmorey/ConfidenceIntervalsFallacy
https://github.com/richarddmorey/ConfidenceIntervalsFallacy


Location

D
en

si
ty

θ − 10 θ − 5 θ θ + 5 θ + 10

0

0.05

0.1

0.15

0.2

a

Figure 1: The sampling distribution of the mean x̄ in the submarine scenario. The shaded region represents
the central 50% of the area. The unshaded triangle marked “a” has area .25, and the standard deviation of
this sampling distribution is about 2.04.
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We can also derive the standard deviation of the sampling distribution of ȳ, also called the standard
error. It is defined as:

SE(ȳ) =
√

V(ȳ) =

√∫ 5

−5
z2 p(z) dz

where p(z) is the triangular sampling distribution in Figure 1 centered around θ = 0. Solving the integral
yields

SE(ȳ) =
5√
6
≈ 2.04.

1.2 Bayesian procedure

The posterior distribution is proportional to the likelihood times the prior. The likelihood is

p(y1, y2 | θ) ∝
2

∏
i=1
I(θ − 5 < yi < θ + 5);

where I is an indicator function. Note since this is the product of two indicator functions, it can only
be nonzero when both indicator functions’ conditions are met; that is, when y1 + 5 and y2 + 5 are both
greater than θ, and y1 − 5 and y2 − 5 are both less than θ. If the minimum of y1 + 5 and y2 + 5 is greater
than θ, then so to must be the maximum. The likelihood thus can be rewritten

p(x1, x2 | θ) ∝ I(x2 − 5 < θ < x1 + 5);

where x1 and x2 are the minimum and maximum observations, respectively. If the prior for θ is propor-
tional to a constant, then the posterior is

p(θ | x1, x2) ∝ I(x2 − 5 < θ < x1 + 5),

This posterior is a uniform distribution over all a posteriori possible values of θ (that is, all θ values within
5 meters of all observations), has width

10− (x2 − x1),

and is centered around x̄. Because the posterior comprises all values of θ the data have not ruled out –
and is essentially just the classical likelihood – the width of this posterior can be taken as an indicator of
the precision of the estimate of θ.

The middle 50% of the likelihood can be taken as a 50% objective Bayesian credible interval. Proof that
this Bayesian procedure is also a confidence procedure is trivial and can be found in Welch (1939).

1.3 BUGS implementation

The submersible example was selected in part because it is so trivial; the confidence intervals and Bayesian
credible intervals can be derived with very little effort. However, for more complicated problems, credible
intervals can be more challenging to derive. Thankfully, modern Bayesian software tools make estima-
tion of credible intervals in many problems as trivial as stating the problem along with priors on the
parameters.

BUGS is a special language that allows users to define a model and prior. Using a software that inter-
prets the BUGS language, such as JAGS (Plummer, 2003) or WinBUGS (Lunn, Thomas, Best, & Spiegelhal-
ter, 2000), the model and prior are then combined with the data. The software then outputs samples from
the posterior distribution for all the parameters, which can be used to create credible intervals.

A full explanation of how to use the BUGS language is beyond the scope of this supplement. Readers
can find more information about using BUGS in Ntzoufras (2009), Lee and Wagenmakers (2013), and
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many tutorials are available on the world wide web. Here, we show how to obtain a credible interval for
the submersible Example 1 using JAGS; in a later section we show how to obtain a confidence interval for
Example 2, ω2 in ANOVA designs.

We first define the model and prior in R using the BUGS language. Notice that this is simply stating
the distributions of the data points, along with a prior for θ.

BUGS_model = "
model{
y1 ~ dunif(theta - 5, theta + 5)
y2 ~ dunif(theta - 5, theta + 5)
theta ~ dnorm( theta_mean, theta_precision)
}

"

We now define a list of values that will get passed to JAGS. y1 and y2 are the data observed values
from Figure 1A, and the prior we choose is an informative prior for demonstration.

for_JAGS = list( y1 = -4.5,
y2 = 4.5,
theta_mean = -2.5,
theta_precision = 1/10^2 )

Since precision is the reciprocal of variance, the prior on θ corresponds to a Normal(µ = −2.5, σ = 10)
prior. All that remains is to load JAGS and combine the model information in BUGS_model with the data
in for_JAGS, then to obtain samples from the posterior distribution.

# Load the rjags package to interface with JAGS
require( rjags )

## Loading required package: rjags
## Loading required package: coda
## Linked to JAGS 3.4.0
## Loaded modules: basemod,bugs

# Set initial value for the sampler
initial.values = list(theta = 0)

# Combine the model with the data
compiled_model = jags.model( file = textConnection(BUGS_model),

data = for_JAGS, inits = initial.values,
quiet = TRUE )

# Sample from the posterior distribution
posterior_samples = coda.samples( model = compiled_model,

variable.names = c("theta"),
n.iter = 100000 )

We can now plot the samples we obtained using the hist function in R.
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Figure 2: Posterior distribution for θ, estimated using JAGS.

theta_samples = posterior_samples[[ 1 ]][ , "theta" ]
hist( theta_samples, breaks = 20, freq = FALSE )

Note the resemblance to Figure 5, bottom panel, in the manuscript. We use the summary function on
the samples to obtain a point estimate as well as quantiles of the posterior distribution, which can be used
to form credible intervals. The 50% central credible interval is the interval between the 25th and 75th
percentile.

summary(theta_samples)

##
## Iterations = 1001:101000
## Thinning interval = 1
## Number of chains = 1
## Sample size per chain = 1e+05
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
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##
## Mean SD Naive SE Time-series SE
## -0.0032434 0.2877994 0.0009101 0.0010831
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## -0.475826 -0.252609 -0.004236 0.243511 0.474247

2 Credible interval for ω2: details

In the manuscript, we compare Steiger’s (2004) confidence intervals for ω2 to Bayesian highest poste-
rior density (HPD) credible intervals. In this section we describe how the Bayesian HPD intervals were
computed.

Consider a one-way design with J groups and N observations in each group. Let yij be the ith obser-
vation in the jth group. Also suppose that

yij
indep.∼ Normal(µj, σ2)

where µj is the population mean of the jth group and σ2 is the error variance. We assume a “non-
informative” prior on parameters µ, σ2:

p(µ1, . . . , µJ , σ2) ∝ (σ2)−1.

This prior is flat on (µ1, . . . , µJ , log σ2). In application, it would be wiser to assume an informative prior
on these parameters, in particular assuming a population over the µ parameters or even the possibility
that µ1 = . . . = µJ = 0 (Rouder, Morey, Speckman, & Province, 2012). However, for this manuscript
we compare against a “non-informative” prior in order to show the differences between the confidence
interval and the Bayesian result with “objective” priors.

Assuming the prior above, an elementary Bayesian calculation (Gelman, Carlin, Stern, & Rubin, 2004)
reveals that

σ2 | y ∼ Inverse Gamma(J(N − 1)/2, S/2)

where S is the error sum-of-squares from the corresponding one-way ANOVA, and

µj | σ2,y
indep.∼ Normal(x̄j, σ2/N)

where µj and x̄j are the true and observed means for the jth group. Following Steiger (2004) we can define

αj = µj −
1
J

J

∑
j=1

µj

as the deviation from the grand mean of the jth group, and

λ = N
J

∑
j=1

( α

σ

)2

ω2 =
λ

λ + NJ
.
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It is then straightforward to set up an MCMC sampler for ω2. Let M be the number of MCMC
iterations desired. We first sample M samples from the marginal posterior distribution of σ2, then sample
the group means from the conditional posterior distribution for µ1, . . . , µJ . Using these posterior samples,
M posterior samples for λ and ω2 can be computed.

The following R function will sample from the marginal posterior distribution of ω2:

## Assumes that data.frame y has two columns:
## $y is the dependent variable
## $grp is the grouping variable, as a factor
Bayes.posterior.omega2

## function (y, conf.level = 0.95, iterations = 10000)
## {
## J = nlevels(y$grp)
## N = nrow(y)/J
## aov.results = summary(aov(y ~ grp, data = y))
## SSE = aov.results[[1]][2, 2]
## sig2 = 1/rgamma(iterations, J * (N - 1)/2, SSE/2)
## lambda = matrix(NA, iterations)
## group.means = tapply(y$y, y$grp, mean)
## for (m in 1:iterations) {
## mu = rnorm(J, group.means, sqrt(sig2[m]/N))
## lambda[m] = N * sum((mu - mean(mu))^2/sig2[m])
## }
## mcmc(lambda/(lambda + N * J))
## }

The Bayes.posterior.omega2 function can be used to compute the posterior and HPD for the first
example in the manuscript. The fake.data.F function, defined in the file steiger.utility.R (avail-
able with the manuscript source code at https://github.com/richarddmorey/ConfidenceIntervalsFallacy),
generates a data set with a specified F statistic.

cl = .683 ## Confidence level corresponding to standard error
J = 3 ## Number of groups
N = 10 ## observations in a group

df1 = J - 1
df2 = J * (N - 1)

## F statistic from manuscript
Fstat = 0.1748638

set.seed(1)
y = fake.data.F(Fstat, df1, df2)

## Steiger confidence interval
steigerCI = steigerCI.omega2(Fstat,df1,df2, conf.level=cl)
samples.omega2 = Bayes.posterior.omega2(y, cl, 100000)

We can compute the Bayesian HPD interval with the HPDinterval function in the R package coda:
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Posterior distribution for ω2
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Figure 3: Histogram of the posterior MCMC samples for ω2. The 68% Bayesian HPD credible interval is
highest density region than captures 68% of the posterior density, shown in gray. The vertical dashed line
denotes the upper bound of the HPD. The 68% Steiger confidence interval is shown as the interval near
the top.

library(coda)

HPDinterval( samples.omega2, prob = cl )

## lower upper
## var1 5.219606e-06 0.08299102
## attr(,"Probability")
## [1] 0.683

2.1 BUGS implementation

Although the code above can be used to quickly sample ω2 for any one-way design, it is not particularly
generalizable for typical users. We can use the BUGS language for Bayesian modeling to create credible
intervals in a way that is more accessible to the general user.
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BUGS_model = "
model{

for( i in 1:NJ ){ # iterate over participants
# Error model for this observation
y[ i ] ~ dnorm( mu[ group[i] ], precision )

}

for( j in 1:J ){ # iterate over groups
# prior for group mean
mu[ j ] ~ dnorm( mean_mu, precision_mu )
# group mean's standardized squared deviation
# from overall mean
mu_dev_sq[ j ] <- pow( mu[ j ] - mean( mu ), 2 ) / variance

}

# BUGS uses the inverse of the variance (precision)
# instead of the variance
precision <- 1 / variance
# prior on error variance
variance ~ dgamma( a_variance, b_variance )

# Define our quantities of interest
lambda <- N * sum( mu_dev_sq )
omega2 <- lambda / ( lambda + N * J )

}
"

In the R code below, we define all the constants and the data needed for the analysis, including the
prior parameters. These prior parameters were chosen to approximate the “non-informative” prior we
used in the previous analysis. As we mentioned in the manuscript, we do not generally advise the use
of such non-informative priors; these values are merely chosen for demonstration. In practice, reasonable
values would be chosen to inform the analysis.

for_JAGS = list( y = y$y,
group = y$grp,
N = N,
J = J,
NJ = N*J,
mean_mu = 0,
precision_mu = 1e-6,
a_variance = 1e-6,
b_variance = 1e-6 )

The following code joins the model (BUGS_model) with the data and defined constants (for_JAGS)
and 10,000 samples from the posterior distribution, outputting the samples of omega2, the parameter of
interest.

# Load the rjags package to interface with JAGS
require( rjags )
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Posterior distribution for ω2
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Figure 4: Posterior distribution for ω2, estimated using JAGS.

# Combine the model with the data
compiled_model = jags.model( file = textConnection(BUGS_model),

data = for_JAGS, quiet = TRUE )

# Sample from the posterior distribution
posterior_samples = coda.samples( model = compiled_model,

variable.names = c("omega2"),
n.iter = 10000 )

The object posterior_samples now contains all posterior samples of the parameter ω2. We can plot
their histogram:

omega2_samples = posterior_samples[[ 1 ]][ , "omega2" ]
hist( omega2_samples, breaks = 20, freq = FALSE )

Note the close similarity between Figure 4 and Figure 3. We can do whatever we like with these
samples; of particular interest would be a point estimate and credible interval. For the point estimate, we
might select the posterior mean; for the credible interval, we can compute a highest-density region:
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# Compute the posterior mean
mean( omega2_samples )

## [1] 0.06931032

# Compute the HDR
HPDinterval( omega2_samples , prob = cl )

## lower upper
## var1 0.0001095948 0.08473403
## attr(,"Probability")
## [1] 0.683

Further useful information about the posterior can be obtained using the summary function.

summary( omega2_samples )

##
## Iterations = 1001:11000
## Thinning interval = 1
## Number of chains = 1
## Sample size per chain = 10000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## 0.0693103 0.0593444 0.0005934 0.0005934
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## 0.002287 0.023369 0.053747 0.099825 0.218027
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